Javascript must be enabled

Kai Xu : pi_2-systolic inequalities for 3-manifolds with positive scalar curvature

We discuss the following recent result of the speaker. Suppose a closed 3-manifold M has scalar curvature at least 1, and has nontrivial second homotopy group, and is not covered by the cylinder (S^2)*R. Then the pi_2-systole of M (i.e. the minimal area in the second homotopy group) is bounded by a constant that is approximately 5.44pi. If we include quotients of cylinder into consideration, then the best upper bound is weakened to 8_pi. This shows a topological gap in the pi_2-systolic inequality. We will discuss the ideas behind this theorem, as well as the proof using Huisken and Ilmanen’s weak inverse mean curvature flow.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video