Javascript must be enabled

Lev Rozansky : A categorification of the stable Witten-Reshetikhin-Turaev invariant of links in S2 x S1

This work was done in close collaboration with M. Khovanov. The Witten-Reshetikhin-Turaev invariant Z(M,L;r) of a link L in a 3-manifold M is a seemingly random function of an integer r. However, for a small class of 3-manifolds constructed by identical gluing of two handlebodies (e.g., for S3 and for S2 x S1) and for sufficiently large values of r the ratio Z(M,L;r)/Z(M;r) is equal to a rational function J(M,L;q) of q evaluated at the first 2r-th root of unity. If M = S3, then J is the Jones polynomial. Khovanov categorified J(S3,L), that is, to a link L in S3 he assigned a homology H(L) with an extra Z-grading such that its graded Euler characteristic equals J(S3,L). We extend Khovanov's construction to links in S2 x S1 thus categorifying J(S2xS1,L). In his work on categorification of the Jones polynomial, Khovanov introduced special algebras H_n and assigned a H_m x H_n module to every (2m,2n)-tangle. We show that if a link L in S2 x S1 is presented as a closure of a (2n,2n)-tangle, then the Hochschild homology of its H_n bimodule is determined by the link itself and serves as a categorificaiton of J(S2xS1,L). Moreover, we show that this Hochschild homology can be approximated by Khovanov homology of the circular closure of the tangle within S3 by a high twist torus braid, thus providing a practical method of its computation.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video