Quicklists
Javascript must be enabled

Julia Kimbell : Applications of upper respiratory tract modeling to risk assessment, medicine, and drug delivery

The upper respiratory tract is the portal of entry for inhaled air and anything we breath in with it. For most of us, the nasal passages do most of the work cleansing, humidifying, and warming inhaled air using a lining of highly vascularized tissue coated with mucus. This tissue is susceptible to damage from inhaled material, can adversely affect life quality if deformed or diseased, and is a potential route of systemic exposure via circulating blood. To understand nasal physiology and the effects of inhalants on nasal tissue, information on airflow, gas uptake and particle deposition patterns is needed for both laboratory animals and humans. This information is often difficult to obtain in vivo but may be estimated with three-dimensional computational fluid dynamics (CFD) models. At CIIT Centers for Health Research (CIIT-CHR), CFD models of nasal airflow and inhaled gas and particle transport have been used to test hypotheses about mechanisms of toxicity, help extrapolate laboratory animal data to people, and make predictions for human health risk assessments, as well as study surgical interventions and nasal drug delivery. In this talk an overview of CIIT-CHR's nasal airflow modeling program will be given with the goal of illustrating how CFD modeling can help researchers clarify, organize, and understand the complex structure, function, physiology, pathobiology, and utility of the nasal airways.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video