Linda Cummings : Fluid dynamics and encrustation problems in stented and catheterized urinary tracts
A ureteric stent is a slender polymer tube that can be placed within the ureter (the muscular tube that conveys urine from the kidney to the bladder) to relieve a blockage due, for example, to a kidney stone in transit, or to external pressure from a tumor. A urinary catheter can be placed similarly within the urethra (the muscular tube conveying urine from the bladder out of the body), either again to relieve a blockage, or to allow control of urination in incontinent patients or those recovering from surgery. Several clinical complications are associated with each of these biomedical devices. Both become encrusted, over time, with salts that precipitate out from the urine. Such encrustation is often associated with infection and the presence of bacterial biofilm on the device and, if severe, can make removal of the device difficult and painful. Ureteric stents are also associated with urinary reflux: retrograde flow of urine back towards the kidney. This arises because the stent prevents proper function of the sphincter between ureter and bladder that normally closes off when bladder pressure rises. Such reflux can expose the kidney to dangerously high pressures, and increase the risk of renal infection, both of which can lead to long-term damage. This talk will highlight aspects of our interdisciplinary work on such problems. We present mathematical models of the reflux and encrustation processes and consider the implications for device design and clinical practice.
- Category: Mathematical Biology
- Duration: 01:29:53
- Date: November 11, 2011 at 11:55 AM
- Views: 110
- Tags: seminar, Mathematical Biology Seminar
0 Comments