Quicklists
Javascript must be enabled

Dave Rose : Graphical calculus and quantum knot invariants

At first glance, knot theory and representation theory seem to be unrelated fields of mathematics. In fact, this is not the case: in the early 90's, Reshetikhin and Turaev proved that knot invariants (and 3-manifold invariants) can be derived via the representation theory of quantum groups. The key link (no pun intended) between these areas is the observation that both the category of tangles and the category of representations share many similar structural features. In this talk we will explore these ideas, and if time permits, their categorified counterparts. If things like categories scare you, fear not; as the title suggests, all categories (and constructions on them) we encounter will have pictorial descriptions. In fact, no knowledge of category theory or representation theory is assumed. At the same time, if you have indeed taken Math 253, then this talk will provide context for the material in that course.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video