Javascript must be enabled

Ashvin Swaminathan : Geometry-of-numbers in the cusp, and class groups of orders in number fields

In this talk, we discuss the distributions of class groups of orders in number fields. We explain how studying such distributions is related to counting integral orbits having bounded invariants that lie inside the cusps of fundamental domains for coregular representations. We introduce two new methods to solve this counting problem, and as an application, we demonstrate how to determine the average size of the 2-torsion in the class groups of cubic orders. Much of this work is joint with Arul Shankar, Artane Siad, and Ila Varma.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video