Quicklists
Javascript must be enabled

Amarjit Budhiraja : Large Deviations for Small Noise Infinite Dimensional Stochastic Dynamical Systems

root

119 Views

The large deviations analysis of solutions to stochastic differential equations and related processes is often based on approximation. The construction and justification of the approximations can be onerous, especially in the case where the process state is infinite dimensional. In this work we show how such approximations can be avoided for a variety of infinite dimensional models driven by some form of Brownian noise. The approach is based on a variational representation for functionals of Brownian motion. Proofs of large deviations properties are reduced to demonstrating basic qualitative properties (existence, uniqueness, and tightness) of certain perturbations of the original process. This is a joint work with P.Dupuis and V.Maroulas.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video