Samuel Friedman : Using MultiCellDS and digital cell lines to initialize large-scale 3-D agent-based cancer simulations (up to 0.5M cells) (Sep 5, 2014 11:55 AM)
Understanding and predicting cancer progression requires detailed interacting models of tumor and stromal cells, all calibrated to experimental data. Work to date has been limited by a lack of standardization of data representations of multicellular systems, though this is now being addressed through MultiCellDS (MultiCellular Data Standard) and digital cell lines, which are standardized representations of microenvironment-dependent cell phenotypes. Computational cancer modelers require biologically and mathematically consistent initialization routines to seed simulations with cells defined in digital cell lines. In this talk, we will briefly introduce a 3-D agent-based model designed for use in integrative computational biology. We introduce a snapshot generator that can take a digital cancer cell line and produce for the agent-based model an initial cell arrangement and a phenotypic state based upon analyses of the digital cell line data elements. We demonstrate 2-D monolayer and 3-D hanging drop simulations up to 500k MCF7 cells, a common breast cancer cell line. We additionally demonstrate the production of digital snapshots, standardized simulation output that will facilitate computational model comparison with a common core of analytical tools. With an early version of these tools, we assess the match between simulations and in vitro experiments. In the future, this work will be used to create and simulate combinations of tumor and stromal cells from appropriate digital cell lines in realistic tissue environments in order to understand, predict, and eventually control cancer progression in individual patients.
- Category: Mathematical Biology
- Duration: 01:34:48
- Date: September 5, 2014 at 11:55 AM
- Views: 110
- Tags: seminar, Mathematical Biology Seminar
0 Comments