Quicklists
Javascript must be enabled

Valentino Tosatti : The evolution of a Hermitian metric by its Chern-Ricci curvature

I will discuss the evolution of a Hermitian metric on a compact complex manifold by its Chern-Ricci curvature. This is an evolution equation which coincides with the Ricci flow if the initial metric is Kahler, and was first studied by M.Gill. I will describe the maximal existence time for the flow in terms of the initial data, and thendiscuss the behavior of the flow on complex surfaces and on some higher-dimensional manifolds. This is joint work with Ben Weinkove.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video