Quicklists
Javascript must be enabled

Andrew Cooper : Singularities of Lagrangian Mean Curvature Flow

In a Calabi-Yau manifold, mean curvature flow--the downward gradient for the area functional--preserves the Lagrangian condition. Thus Lagrangian mean curvature flow suggests a way to find minimal Lagrangian submanifolds of a CY manifold, provided the flow lasts for all time. However, finite-time singularities are expected along the flow; in fact, ill-behaved singularities are generic in some sense. In this talk we will discuss two main results: one, that type I (mild) finite-time singularities can be predicted by looking the cohomology of the initial Lagrangian submanifold, and two, that type II (ill-behaved) singularities can be modeled as unions of special Lagrangian cones. We will also discuss what these results say about using mean curvature flow to understand the topology of Lagrangian submanifolds.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video