Quicklists
Javascript must be enabled

Lars Sektnan : Blowing up extremal Poincaré type manifolds

One of the central conjectures in Kähler geometry is the Yau-Tian-Donaldson conjecture relating the existence of canonical Kähler metrics to algebro-geometric stability. A natural question is to ask what happens when such a metric does not exist, and here Kähler metrics of Poincaré type are expected to play an important role. These metrics are Kähler metrics defined on the complement of a divisor in a compact complex manifold and have a cusp-like singularity near the divisor. The blow-up theorem of Arezzo-Pacard and its generalizations give sufficient conditions for the blow-up of a compact Kähler manifold admitting a canonical metric to also carry such a metric. I will describe an extension of this result to the Poincaré type setting.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video