Quicklists
Javascript must be enabled

Ben Howard : Twisted Gross-Zagier theorems and central derivatives in Hida families

root

108 Views

Abstract: Given a Hida family of modular forms, a conjecture of Greenberg predicts that L-functions of forms in the family should generically vanish to order 0 or 1 at the center of the functional equation. Similarly the Selmer groups of forms in the family should generically be of rank 0 or 1. In this talk I will prove a generalization of the Gross-Zagier theorem, relating Neron-Tate heights of special points on the modular Jacobian J_1(N) to derivatives of L-functions, and explain how this generalization can be used to verify Greenberg's conjecture for any particular Hida family.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video