Javascript must be enabled

Firas Rassoul-Agha : On the almost-sure invariance principle for random walk in random environment



Consider a crystal formed of two types of atoms placed at the nodes of the integer lattice. The type of each atom is chosen at random, but the crystal is statistically shift-invariant. Consider next an electron hopping from atom to atom. This electron performs a random walk on the integer lattice with randomly chosen transition probabilities (since the configuration seen by the electron is different at each lattice site). This process is highly non-Markovian, due to the interaction between the walk and the environment. We will present a martingale approach to proving the invariance principle (i.e. Gaussian fluctuations from the mean) for (irreversible) Markov chains and show how this can be transferred to a result for the above process (called random walk in random environment). This is joint work with Timo Sepp\"al\"ainen.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.


Comments Disabled For This Video