Quicklists
Javascript must be enabled

Dan Yasaki : Modular forms and elliptic curves over the cubic field of discriminant -23 (Feb 26, 2014 1:55 PM)

The cohomology of arithmetic groups is built from certain automorphic forms, allowing for explicit computation of Hecke eigenvalues using topological techniques in some cases. For modular forms attached to the general linear group over a number field F of class number one, these cohomological forms can be described in terms an associated Voronoi polyhedron coming from the study of perfect n-ary forms over F. In this talk, we describe this relationship and report on some recent computational investigations of the modularity of elliptic curves over the cubic field of discriminant -23. This is joint work with Donnelly, Gunnells, and Klages-Mundt.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video