Quicklists
Javascript must be enabled

Brittany Froese : Meshfree finite difference methods for fully nonlinear elliptic equations

The relatively recent introduction of viscosity solutions and the Barles-Souganidis convergence framework have allowed for considerable progress in the numerical solution of fully nonlinear elliptic equations. Convergent, wide-stencil finite difference methods now exist for a variety of problems. However, these schemes are defined only on uniform Cartesian meshes over a rectangular domain. We describe a framework for constructing convergent meshfree finite difference approximations for a class of nonlinear elliptic operators. These approximations are defined on unstructured point clouds, which allows for computation on non-uniform meshes and complicated geometries. Because the schemes are monotone, they fit within the Barles-Souganidis convergence framework and can serve as a foundation for higher-order filtered methods. We present computational results for several examples including problems posed on random point clouds, computation of convex envelopes, obstacle problems, non-continuous surfaces of prescribed Gaussian curvature, and Monge-Ampere equations arising in optimal transportation.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video