Quicklists
Javascript must be enabled

Stephen Kudla : Theta integrals and generalized error functions

Recently Alexandrov, Banerjee, Manschot and Pioline [ABMP] constructed generalizations of Zwegers theta functions for lattices of signature (n-2,2). They also suggested a generalization to the case of arbitrary signature (n-q,q) and this case was subsequently proved by Nazaroglu. Their functions, which depend on certain collections $\CC$ of negative vectors, are obtained by `completing' a non-modular holomorphic generating series by means of a non-holomorphic theta type series involving generalized error functions. In joint work with Jens Funke, we show that their completed modular series arises as integrals of the q-form valued theta functions, defined in old joint work of the author and John Millson, over a certain singular $q$-cube determined by the data $\CC$. This gives an alternative construction of such series and a conceptual basis for their modularity. If time permits, I will discuss the simplicial case and a curious `convexity' problem for Grassmannians that arises in this context.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video