# Benedikt Wirth : Optimal fine-scale structures in elastic shape optimization

A very classical shape optimization problem consists in optimizing the topology and geometry of an elastic structure subjected to fixed boundary loads. One typically aims to minimize a weighted sum of material volume, structure perimeter, and structure compliance (a measure of the inverse structure stiffness). This task is not only of interest for optimal designs in engineering, but e.g. also helps to better understand biological structures. The high nonconvexity of the problem makes it impossible to find the globally optimal design; if in addition the weight of the perimeter is chosen small, very fine material structures are optimal that cannot even be resolved numerically. However, one can prove an energy scaling law that describes how the minimum of the objective functional scales with the model parameters. Part of such a proof involves the construction of a near-optimal design, which typically exhibits fine-scale structure in the form of branching and which gives an idea of how optimal geometries look like. (Joint with Robert Kohn)

**Category**: Applied Math and Analysis**Duration**: 01:34:37**Date**: October 7, 2013 at 4:25 PM**Views**: 127-
**Tags:**seminar, Applied Math And Analysis Seminar

## 0 Comments