Quicklists
Javascript must be enabled

Nicolas Zygouras : Pinning-depinning transition in Random Polymers

root

138 Views

Random Polymers are modeled as a one dimensional random walk (S_n), with excursion length distribution P(S_1 = n) = \phi(n)/n^\alpha, \alpha > 1 and \phi(n) a slowly varying function. The polymer gets a random reward whenever it visits or crosses an interface. The random rewards are realised as a sequence of i.i.d. variables (\omega_n). Depending on the relation between the mean value of the disorder \omega_n and the temperature, the polymer might prefer to stick to the interface (pinnings) or undergo a long excursion away from it (depinning). In this talk we will review some aspects of random polymer models. We will also discuss in more detail the pinning-depinning transition of the `Pinning' model and prove its annealed and quenched critical points are distinct. This is joint work with Ken Alexander.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video