Quicklists
Javascript must be enabled

Braxton Osting : Dirichlet Graph Partitions (Apr 18, 2016 4:25 PM)

I’ll discuss a geometric approach to graph partitioning where the optimality criterion is given by the sum of the first Laplace-Dirichlet eigenvalues of the partition components. This eigenvalue optimization problem can be solved by a rearrangement algorithm, which we show to converge in a finite number of iterations to a local minimum of a relaxed objective. This partitioning method compares well to state-of-the-art approaches on a variety of graphs constructed from manifold discretizations, synthetic data, the MNIST handwritten digit dataset, and images. I'll present a consistency result for geometric graphs, stating convergence of graph partitions to an appropriate continuum partition.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video