Quicklists
Javascript must be enabled

Daniel Halpern-Leistner : Equivariant geometry and Calabi-Yau manifolds

Developments in high energy physics, specifically the theory of mirror symmetry, have led to deep conjectures regarding the geometry of a special class of complex manifolds called Calabi-Yau manifolds. One of the most intriguing of these conjectures states that various geometric invariants, some classical and some more homological in nature, agree for any two Calabi-Yau manifolds which are "birationally equivalent" to one another. I will discuss how new methods in equivariant geometry have shed light on this conjecture over the past few years, leading to the first substantial progress for compact Calabi-Yau manifolds of dimension greater than three. The key technique is the new theory of "Theta-stratifications," which allows one to bring ideas from equivariant Morse theory into the setting of algebraic geometry.

Please select playlist name from following

Report Video

Please select the category that most closely reflects your concern about the video, so that we can review it and determine whether it violates our Community Guidelines or isn’t appropriate for all viewers. Abusing this feature is also a violation of the Community Guidelines, so don’t do it.

0 Comments

Comments Disabled For This Video