Sarah Schott : Computational Complexity
- Graduate/Faculty Seminar ( 274 Views )What does it mean for a problem to be in P, or NP? What is NP completeness? These are questions, among others, that I hope to answer in my talk on computational complexity. Computational complexity is a branch of theoretical computer science dealing with analysis of algorithms. I hope to make it as accessible as possible, with no prior knowledge of algorithms and running times.
Oliver Gjoneski : Eichler-Shimura vs. Harish-Chandra
- Graduate/Faculty Seminar ( 144 Views )After a brief introduction of modular forms on the upper half plane and vector-space valued differential forms, we will explore a very classical result (independently due to Eichler and Shimura) which relates certain cohomology groups to cusp forms on the upper half plane of corresponding weight. We will then put our algebraic hat on, and recast this result in modern light, using the theory of Automorphic forms developed by (among others) Harish-Chandra and Langlands. I hope to make the talk accessible to most graduate students. Though the topics we will talk about are related to my research, it is not a research talk, more of an exposition. The first part of the talk should be a breeze for anyone with understanding of some fundamental concepts in Complex analysis and Algebraic Topology (holomorphic functions, differential forms, deRham cohomology.) A course in Representation Theory would be helpful in relating to the concepts in the second part of the talk.
Lenhard Ng : Symplectic Techniques in Topology: An Informal Introduction
- Graduate/Faculty Seminar ( 254 Views )In geometry, there are certain structures that are "rigid" (like Riemannian manifolds) and others that are "flexible" (like topological manifolds). Symplectic geometry lies in between these two extremes and incorporates some attractive features of both. One consequence is that symplectic techniques have recently been used, to great effect, to give combinatorial approaches to questions in topology that previously required difficult gauge-theoretic and analytic techniques. I will introduce symplectic structures and describe some recent developments linking them to the study of three-dimensional manifolds and knots. No real background will be assumed.
Mauro Maggioni : A primer on wavelets and their applications
- Graduate/Faculty Seminar ( 117 Views )Wavelets are widely used in signal processing (e.g. analysis of sounds and music) and imaging, for tasks such as denoising and compression (ever wondered how jpeg works?). In harmonic analysis they have been used to understand and solve problems involving integral operators motivated by PDEs. In numerical PDEs they lead to fast algorithms for solving certain types of integral equations and PDEs. I will give a gentle introduction to wavelets and some of their motivating applications, accompanied by live demos. If time allows, I will discuss shortcomings and how they have been addressed in more recent developments and generalizations.
Wai (Jenny) Law : Approximately Counting Perfect and General Matchings in Bipartite andGeneral Graphs
- Graduate/Faculty Seminar ( 155 Views )Approximating the permanent of a matrix with nonnegative entries is a well studied problem. The most successful approach to date uses Markov chains, and Jerrum, Sinclair, and Vigoda developed such a method that runs in polynomial time O(n^7 (log n)^4). We present a very different approach using self-reducible acceptance/rejection, and show that for a class of dense problems, our method has an O(n^4 log n) expected running time. Also, we extend our approach to approximate the number of perfect matchings in non-bipartite graphs and general matchings in general graphs.
Jeff Jauregui : Geometry and topology in low dimensions: an introduction togeometric flows
- Graduate/Faculty Seminar ( 136 Views )This talk will be geared toward first and second year grad students and/or anyone with limited geometry experience. We will discuss the idea of curvature for curves and surfaces and the notion of "best metrics." The classical Uniformization Theorem will be introduced from a modern angle: Ricci flow. This will motivate studying the Ricci flow in dimension 3 as a tool to understand topology in terms of geometry. Time permitting, we will finish by discussing the Geometrization Theorem.
Benoit Charbonneau : Instantons and reduction of order via the Nahm transform
- Graduate/Faculty Seminar ( 152 Views )The instanton equations appear in gauge theory and generalize both the Maxwell equations and the harmonic equation. Their study has been and continues to be a very fertile ground for interactions between physicists and mathematicians. The object of this talk is a description of instanton solutions on S^1xR^3 due to Hurtubise and myself using the Nahm transform, a non-linear transformation that takes a system of PDE and produces a system of ODE or even a system of algebraic equations. This description allows us to answer existence questions for calorons.
Bill Allard : The Boundary Finder
- Graduate/Faculty Seminar ( 185 Views )(This abstract is in TeX source code. Sorry!) Fix a small positive number $h$. Let $$G=h\mathbb{Z}^2=\{(ih,jh):i,j\in\mathbb{Z}\};$$ thus $G$ is a rectangular grid of points in $\mathbb{R}^2$. Let $\Omega$ be an bounded open subset of $\mathbb{R}^2$ with $C^1$ boundary and let $E=\{x\in G:x\in\Omega\}$. {\bf Question One.} Given $E$ can one determine the length of $\partial\Omega$ to within $O(h)$? The answer to this question is ``yes'', provided $\Omega$ satisfies a certain natural ``thickness'' condition; without this additional assumption the answer may be ``no''. {\bf Question Two.} Is there a fast algorithm for determining the length of $\partial\Omega$. The answer to this question also ``yes''. In this talk I will describe the proof that the answer to Question One is ``yes'' and I will describe the fast algorithm whose existence is implied in the answer to Question Two. If time permits, I will describe some applications.
Hubert Bray : An Overview of General Relativity
- Graduate/Faculty Seminar ( 169 Views )After brief introductions to special relativity and the foundations of differential geometry, we will discuss the big ideas behind Einstein's theory of general relativity. Einstein's theory replaces Newtonian physics not only as the best description of gravity according to experiments, but also as a philosophically pleasing and very geometric idea, which Einstein called his "happiest thought." We will also discuss the predictions made by general relativity, including the big bang and black holes, both of which are strongly supported by observations. We will discuss these ideas from a geometric perspective, and discuss some of the open problems and future directions that are currently being studied.
Michael Jenista : Dynamical Systems and the Conley Index
- Graduate/Faculty Seminar ( 180 Views )An introductory lecture to the Conley Index theory. We consider the flow case and introduce the key object of study: an index pair of an isolated invariant set. Index pairs are robust under perturbations and their homotopy type is invariant, making them an ideal tool for problems with error terms or even data-generated systems. The relevant tools are algebraic topology and some knowledge of continuous flows.
Harold Layton : Irregular Flow Oscillations in the Nephrons of Spontaneously Hypertensive Rats
- Graduate/Faculty Seminar ( 153 Views )The nephron is the functional unit of the kidney. The flow rate in each nephron is regulated, in part, by tubuloglomerular feedback, a negative feedback loop. In some parameter regimes, this feedback system can exhibit oscillations that approximate limit-cycle oscillations. However, nephron flow in spontaneously hypertensive rats (SHR) can exhibit highly irregular oscillations similar to deterministic chaos. We used a mathematical model of tubuloglomerular feedback (TGF) to investigate potential sources of the irregular oscillations and the associated complex power spectra in SHR. A bifurcation analysis of the TGF model equation was performed by finding roots of the characteristic equation, and numerical simulations of model solutions were conducted to assist in the interpretation of the analysis. Four potential sources of spectral complexity in SHR were identified: (1) bifurcations that produce qualitative changes in solution type, leading to multiple spectrum peaks and their respective harmonic peaks; (2) continuous lability in delay parameters, leading to broadening of peaks and their harmonics; (3) episodic lability in delay parameters, leading to multiple peaks and their harmonics; and (4) coupling of small numbers of nephrons, leading to broadening of peaks, multiple peaks, and their harmonics. We conclude that the complex power spectra in SHR may be explained by the inherent complexity of TGF dynamics, which may include solution bifurcations, variation in TGF parameters, and coupling between small numbers of neighboring nephrons.
Fernando Schwartz : On the topology of black holes
- Graduate/Faculty Seminar ( 154 Views )3+1 dimensional black holes have spherical topology, but in higher dimensions this is no longer true. In this talk I will explain the preceding statement and show a construction, in terms of Riemannian geometry, of outermost apparent horizons with nonspherical topology.
Paul Aspinwall : The Ubiquity of the ADE Classification
- Graduate/Faculty Seminar ( 266 Views )Many classes of mathematical objects turn out to be classified in the same way --- two infinite series and 3 "exceptional" objects. These include symmetries of 3-dimensional solids, rigid singularities, certain types of Lie algebras, positive definite even intersection forms, etc. Discovering why such classes should have the same classification has led to many beautiful ideas and observations. I will give a review of some of the basic ideas (assuming very little in the way of prerequisites) and I may have time to say why string theory has been important in this context.
Anne Catlla : Mean, Lean ODE-fighting Machine
- Graduate/Faculty Seminar ( 156 Views )Our brains are composed of networks of cells, including neurons and glial cells. While the significance of neurons has been established by biologists, the role of glial cells is less understood. One hypothesis is that glial cells facilitate neural communication in nearby neurons, while suppressing communication among more distant neurons via a reaction-diffusion process. I consider this proposed mechanism using partial and ordinary differential equation models. By analyzing the ordinary differential equation model, I can determine conditions for this hypothesis to hold. I then compare the results of this analysis with simulations of the partial differential equation model and discuss the biological implications.
Matthew Surles : Approximating Layer Potentials on and near curve segments, the long and the short of it.
- Graduate/Faculty Seminar ( 150 Views )In many problems in fluids and electromagnetics, we may formulate solutions to the Dirichlet and Neumann problems in terms of double and single layer potentials. Such boundary integral representations can result in computational difficulties at points on and near the boundary due to singularities and near singularities. The case of a smooth closed boundary has been well-studied, but I will focus on computational issues that arise from a boundary that is only piecewise smooth, consisting of connected curve segments. I will give an overview of my research in approximating singular and nearly singular integrals, as well as discuss an approach for the computation of double layer potentials at points on and near a curve segment.
Bianca Santoro : Nice person speaks of ... ?
- Graduate/Faculty Seminar ( 187 Views )THIS JUST IN - An Abstract: I plan to speak about the good old Calabi Conjecture, and its beautiful solution by Yau, that gave gim the Fields Medal. I will start with some background material, and see how far we can get into the proof!
Joseph Spivey! : Mapping Class Groups and Moduli Spaces
- Graduate/Faculty Seminar ( 216 Views )There are many different ways to make a compact 2-manifold of genus g into a Riemann surface. In fact, there is an entire space of dimension 3g-3 (when g>1) of possible holomorphic structures. This space is called the moduli space of Riemann surfaces of genus g. We will give a definition of moduli spaces and briefly talk about their construction, starting with the "easy" examples of g=0 and g=1. We will also talk about mapping class groups, which play an important part in the construction of moduli spaces.
Mike Gratton : Coarsening of thin liquid films
- Graduate/Faculty Seminar ( 144 Views )Coarsening is the phenomenon where many objects (water drops, molecular islands, particles in a freezing liquid) becoming a smaller number of objects in an orderly way. This talk will examine modeling one such system, tiny liquid drops, through three models: a PDE for the fluid, a coarsening dynamical system for the drops, and an LSW-type ensemble model for the group of drops. We will study self-similarity in the dynamics and extensions of the model to examine very long times when drops grow large enough that gravity distorts their shape.
Abraham Smith : DEs to EDS: How to solve PDEs without being clever
- Graduate/Faculty Seminar ( 174 Views )This talk is directed to anyone who cares about anything, at all levels. In particular, it will be a soft introduction to exterior differential systems (EDS). EDS is often associated with differential geometry, but it is really just a language for understanding the solution space of differential equations. The EDS viewpoint is temporarily mind-bending, but its concise and clean description of integrability, from conservation laws to geometric invariants, justifies the initial cramps.
Shahed Sharif : Class field theory and cyclotomic fields
- Graduate/Faculty Seminar ( 204 Views )We'll undertake a gentle introduction to class field theory by investigating cyclotomic fields, including a proof of quadratic reciprocity. The results we'll discuss complement Les Saper's Grad Faculty seminar talk, though by no means is the latter a prerequisite. As a special treat, I will reveal a completely new, elementary proof of Fermat's Last Theorem.