Max Xu : Random multiplicative functions and applications
- Probability ( 262 Views )Random multiplicative functions are probabilistic models for multiplicative arithmetic functions, such as Dirichlet characters or the Liouville function. In this talk, I will first quickly give an overview of the area, and then focus on some of the recent works on proving central limit theorems, connections to additive combinatorics, as well as some other deterministic applications. Part of the talk is based on joint work with Soundararajan, with Harper and Soundararajan (in progress) and with Angelo and Soundararajan (in progress).
Lisa Hartung : Extreme Level Sets of Branching Brownian Motion
- Probability ( 253 Views )Branching Brownian motion is a classical process in probability theory belonging to the class of ?Log-correlated random fields?. We study the structure of extreme level sets of this process, namely the sets of particles whose height is within a fixed distance from the order of the global maximum. It is well known that such particles congregate at large times in clusters of order-one genealogical diameter around local maxima which form a Cox process in the limit. We add to these results by finding the asymptotic size of extreme level sets and the typical height and shape of those clusters which carry such level sets. We also find the right tail decay of the distribution of the distance between the two highest particles. These results confirm two conjectures of Brunet and Derrida.(joint work with A. Cortines, O Louidor)
Didong Li : Learning & Exploiting Low-Dimensional Structure in High-Dimensional Data
- Probability ( 240 Views )Data lying in a high dimensional ambient space are commonly thought to have a much lower intrinsic dimension. In particular, the data may be concentrated near a lower-dimensional subspace or manifold. There is an immense literature focused on approximating the unknown subspace and the unknown density, and exploiting such approximations in clustering, data compression, and building of predictive models. Most of the literature relies on approximating subspaces and densities using a locally linear, and potentially multiscale, dictionary with Gaussian kernels. In this talk, we propose a simple and general alternative, which instead uses pieces of spheres, or spherelets, to locally approximate the unknown subspace. I will also introduce a curved kernel called the Fisher??Gaussian (FG) kernel which outperforms multivariate Gaussians in many cases. Theory is developed showing that spherelets can produce lower covering numbers and mean square errors for many manifolds, as well as the posterior consistency of the Dirichlet process mixture of the FG kernels. Time permitting, I will also talk about an ongoing project about stochastic differential geometry.
Johan Brauer : The Stabilisation of Equilibria in Evolutionary Game Dynamics through Mutation
- Probability ( 208 Views )The multi-population replicator dynamics (RD) can be considered a dynamic approach to the study of multi-player games, where it was shown to be related to Cross-learning, as well as of systems of co-evolving populations. However, not all of its equilibria are Nash equilibria (NE) of the underlying game, and neither convergence to an NE nor convergence in general are guaranteed. Although interior equilibria are guaranteed to be NE, no interior equilibrium can be asymptotically stable in the multi-population RD, resulting, e.g., in cyclic orbits around a single interior NE. We report on our investigation of a new notion of equilibria of RD, called mutation limits, which is based on the inclusion of a naturally arising, simple form of mutation, but is invariant under the specific choice of mutation parameters. We prove the existence of such mutation limits for a large range of games, and consider an interesting subclass, that of attracting mutation limits. Attracting mutation limits are approximated by asymptotically stable equilibria of the (mutation-)perturbed RD, and hence, offer an approximate dynamic solution of the underlying game, especially if the original dynamic has no asymptotically stable equilibria. Therefore, the presence of mutation will indeed stabilise the system in certain cases and make attracting mutation limits near-attainable. Furthermore, the relevance of attracting mutation limits as a game theoretic equilibrium concept is emphasised by the relation of (mutation-)perturbed RD to the Q-learning algorithm in the context of multi-agent reinforcement learning. However, in contrast to the guaranteed existence of mutation limits, attracting mutation limits do not exist in all games, raising the question of their characterization.
Yu Gu : Scaling limits of random fluctuations in homogenization of divergence form operators
- Probability ( 182 Views )Recently, quantitative stochastic homogenization of operators in divergence form has witnessed important progress. Our goal is to go beyond the error bound to analyze statistical fluctuations around the homogenized limit. We prove a pointwise two-scale expansion and a large scale central limit theorem for the solution. The approach is probabilistic. The main ingredients include the Kipnis-Varadhan method applied to symmetric diffusion in random environment, a quantitative martingale central limit theorem, the Helffer-Sjostrand covariance representation and Stein's method. This is joint work with Jean-Christophe Mourrat.
Amarjit Budhiraja : Large Deviations for Small Noise Infinite Dimensional Stochastic Dynamical Systems
- Probability ( 171 Views )The large deviations analysis of solutions to stochastic differential equations and related processes is often based on approximation. The construction and justification of the approximations can be onerous, especially in the case where the process state is infinite dimensional. In this work we show how such approximations can be avoided for a variety of infinite dimensional models driven by some form of Brownian noise. The approach is based on a variational representation for functionals of Brownian motion. Proofs of large deviations properties are reduced to demonstrating basic qualitative properties (existence, uniqueness, and tightness) of certain perturbations of the original process. This is a joint work with P.Dupuis and V.Maroulas.
David Nualart : Regularity of the density of the stochastic heat equation
- Probability ( 165 Views )In this talk we present a recent result on the smoothness of the density for the solution of a semilinear heat equation with multiplicative space-time Gaussian white noise. We assume that the coefficients are smooth and the diffusion coefficient is not identically zero at the initial time. The proof of this result is based on the techniques of the Malliavin calculus, and the existence of negative moments for the solution of a linear heat equation with multiplicative space-time white noise.
Carla Staver : Stable coexistence of savannah and forest in a spatial model
- Probability ( 157 Views )The goal of this talk is to further a joint project involving Carla Staver, Simon Levin, Rick Durrett, and Ruibo Ma. The puzzle is: why can savannah and forest display stable coexistence when this is not possible in a spatially homogeneous system.
Roberto I. Oliveira : Estimating graph parameters via multiple random walks
- Probability ( 142 Views )What can one say about a graph from multiple (short) random walk trajectories on it? In this talk we consider algorithms that only "see" walk trajectories and the degrees along the way. We will show that the number of vertices, edges and mixing time can be all estimated with a number of RW steps that is sublinear in the size of the graph and in its mixing or relaxation time. Our bounds on the number of RW steps are optimal up to constant or polylog factors. We also argue that such algorithms cannot "know when to stop", and discuss additional conditions that circumvent this limitation. To analyse our results, we rely on novel bounds for random walk intersections. The lower bounds come from a family of explicit constructions.
Mokshay Madiman : A Shannon-McMillan-Breiman theorem for log-concave measures and applications in convex geometry
- Probability ( 132 Views )Our primary goal is to describe a strong quantitative form of the Shannon-McMillan-Breiman theorem for log-concave probability measures on linear spaces, even in the absence of stationarity. The main technical result is a concentration of measure inequality for the ``information content'' of certain random vectors. We will also briefly discuss implications. In particular, by combining this concentration result with ideas from information theory and convex geometry, we obtain a reverse entropy power inequality for convex measures that generalizes the reverse Brunn-Minkowski inequality of V. Milman. Along the way, we also develop a new information-theoretic formulation of Bourgain's hyperplane conjecture, as well as some Gaussian comparison inequalities for the entropy of log-concave probability measures. This is joint work with Sergey Bobkov (Minnesota).
Pascal Maillard : Interval fragmentations with choice
- Probability ( 132 Views )Points fall into the unit interval according to a certain rule, splitting it up into fragments. An example rule is the following: at each step, two points are randomly drawn from the unit interval and the one that falls into the smaller (or larger) interval is discarded, while the other one is kept. This process is inspired by the so-called "power of choice" paradigm originating in the computer science literature on balanced load allocation models. The question of interest is how much the rule affects the geometry of the point cloud. With Elliot Paquette [1] we introduced a general version of this interval fragmentation model and showed that the empirical distribution of rescaled interval lengths converges almost surely to a deterministic probability measure. I will report on this work as well as on work in progress [2] where we show that the empirical measure of the points converges almost surely to the uniform distribution. The proofs involve techniques from stochastic approximation, non-linear integro-differential equations, ergodic theory for Markov processes and perturbations of semigroups on L^p spaces, amongst other things. [1] Maillard, P., & Paquette, E. (2016). Choices and intervals. Israel Journal of Mathematics, 212(1), 337?384. [2] Maillard, P., & Paquette, E. (in preparation). Interval fragmentations with choice: equidistribution and the evolution of tagged fragments
Matt Junge : Parking
- Probability ( 125 Views )Parking functions were introduced by combinatorialists in the 1960s, and have recently been studied by probabilists. When the parking lot is an infinite graph and cars drive around at random, we will look at how many parking spots are needed for every car to eventually find a spot.
Richard Bass : Uniqueness in law for parabolic SPDEs and infinite dimensional SDEs
- Probability ( 124 Views )We consider the heat equation on an interval with heat being introduced according to a random mechanism. When the random mechanism is space-time white noise, this equation has been much studied. We look at the case where the white noise is modified by a function A(u)(x) of the current temperatures u and where A is H\"older continuous as a function of u. Unlike other work along these lines, A(u)(x) can depend on the temperatures throughout the interval. Our method involves looking at the Fourier coefficients, which leads to an infinite dimensional system of stochastic differential equations. This is joint work with Ed Perkins.
Matt Junge : Ballistic Annihilation
- Probability ( 122 Views )In the late 20th century, statistical physicists introduced a chemical reaction model called ballistic annihilation. In it, particles are placed randomly throughout the real line and then proceed to move at independently sampled velocities. Collisions result in mutual annihilation. Many results were inferred by physicists, but it wasn??t until recently that mathematicians joined in. I will describe my trajectory through this model. Expect tantalizing open questions.
Elena Kosygina : Excited random walks
- Probability ( 120 Views )The idea behind excited random walks (ERWs), roughly speaking, is to take a well-known underlying process (such as, for example, simple symmetric random walk (SSRW)) and modify its transition probabilities for the "first few" visits to every site of the state space. These modifications can be deterministic or random. The resulting process is not markovian, and its properties can be very different from those of the underlying process. I shall give a short review of some of the known results for ERW (with SSRW as underlying process) on the d-dimensional integer lattice and then concentrate on a specific model for d=1. For this model we can give a complete picture including functional limit theorems.
Ross Pinsky : Transience, Recurrence and the Speed of a Random Walk in a Site-Based Feedback Environment
- Probability ( 120 Views )We study a random walk on the integers Z which evolves in a dynamic environment determined by its own trajectory. Sites flip back and forth between two modes, p and q. R consecutive right jumps from a site in the q-mode are required to switch it to the p-mode, and L consecutive left jumps from a site in the p-mode are required to switch it to the q-mode. From a site in the p-mode the walk jumps right with probability p and left with probability (1-p), while from a site in the q-mode these probabilities are q and (1-q). We prove a sharp cutoff for right/left transience of the random walk in terms of an explicit function of the parameters $\alpha = \alpha(p,q,R,L)$. For $\alpha > 1/2$ the walk is transient to $+\infty$ for any initial environment, whereas for $\alpha < 1/2$ the walk is transient to $-\infty$ for any initial environment. In the critical case, $\alpha = 1/2$, the situation is more complicated and the behavior of the walk depends on the initial environment. We are able to give a characterization of transience/recurrence in many instances, including when either R=1 or L=1 and when R=L=2. In the noncritical case, we also show that the walk has positive speed, and in some situations are able to give an explicit formula for this speed. This is joint work with my former post-doc, Nick Travers, now at Indiana University.
Zsolt Pajor-Gyulai : Stochastic approach to anomalous diffusion in two dimensional, incompressible, periodic, cellular flows.
- Probability ( 117 Views )It is a well known fact that velocity grandients in a flow change the dispersion of a passive tracer. One clear manifestation of this phenomenon is that in systems with homogenization type diffusive long time/large scale behavior, the effective diffusivity often differs greatly from the molecular one. An important aspect of these well known result is that they are only valid on timescales much longer than the inverse diffusivity. We are interested in what happens on shorter timescales (subhomogenization regimes) in a family of two-dimensional incompressible periodic flows that consists only of pockets of recirculations essentially acting as traps and infinite flowlines separating these where significant transport is possible. Our approach is to follow the random motion of a tracer particle and show that under certain scaling it resembles time-changed Brownian motions. This shows that while the trajectories are still diffusive, the variance grows differently than linear.
Jasmine Foo : Accumulation and spread of advantageous mutations in a spatially structured tissue
- Probability ( 115 Views )I will discuss a stochastic model of mutation accumulation and spread in a spatially-structured population. This situation arises in a variety of ecological and biological problems, including the process of cancer initiation from healthy tissue. Cancer arises via the accumulation of mutations to the genetic code. Although many mathematical models of cancer initiation have assumed `perfect mixing' or spatial homogeneity, solid tumors often initiate from tissues with well-regulated spatial architecture and dynamics. Here, we study a stochastic model to investigate the temporal dynamics and patterns of mutation accumulation (i.e. how they depend on system parameters such as mutation rate, population size, and selective fitness advantage of mutations). Joint work with R. Durrett (Duke) and K. Leder (Minnesota).
Philip Matchett Wood : Random doubly stochastic tridiagonal matrices
- Probability ( 115 Views )Let $T_n$ be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally as birth and death chains with a uniform stationary distribution. One can think of a ?typical? matrix $T_n$ as one chosen uniformly at random, and this talk will present a simple algorithm to sample uniformly in $T_n$. Once we have our hands on a 'typical' element of $T_n$, there are many natural questions to ask: What are the eigenvalues? What is the mixing time? What is the distribution of the entries? This talk will explore these and other questions, with a focus on whether a random element of $T_n$ exhibits a cutoff in its approach to stationarity. Joint work with Persi Diaconis.
Andrea Agazzi : Large Deviations Theory for Chemical Reaction Networks
- Probability ( 111 Views )The dynamics of a set of chemical reactions are usually modeled by mass action kinetics as a set of algebraic ordinary differential equations. This model sees the state space of the system as a continuum, whereas chemical reactions represent interactions of a discrete set of molecules. We study large fluctuations of the stochastic mass action kinetics model through Freidlin-Wentzell theory. The application of such a theory to this framework requires justification, in particular because of the non-uniformily Lipschitz character of the model. We therefore find, using tools of Lyapunov stability theory, a set of sufficient conditions for the applicability of large deviations theory to this framework, and prove that such conditions are satisfied by a large class of chemical reaction networks identified exclusively on the base of their topological structure.
Jessica Zuniga : On the spectral analysis of second-order Markov chains.
- Probability ( 107 Views )In this talk we consider second-order finite Markov chains that are > trajectorially reversible, a property that is a generalization of the > notion of reversibility for usual Markov chains. Specifically, we > study spectral properties of second-order Markov chains that have a > tendency to not return to their previous state. We confirm that > resorting to second-order chains can be an option to improve the speed > of convergence to equilibrium. This is joint work with Persi Diaconis > and Laurent Miclo.
Jake Madrid : Stochastic Extinction events in Large Populations Prior to Entering the Metastable State
- Probability ( 102 Views )We will explore the role of demographic stochasticity in triggering extinction events in models of large finite populations. While prior works have focused on large fluctuations from quasi-stationary distributions, we instead consider extinction events occurring before entering a metastable state. Since such extinction events require only slight deviations from the mean-field trajectories, we can derive the approximating extinction probability PDE with a modified Robin-type boundary condition. We then investigate the utility of this approximation by comparing to the Lotka-Volterra model as well as the Lotka-Volterra model with logistic growth.
Erik Bates : The Busemann process of (1+1)-dimensional directed polymers
- Probability ( 78 Views )Directed polymers are a statistical mechanics model for random growth. Their partition functions are solutions to a discrete stochastic heat equation. This talk will discuss the logarithmic derivatives of the partition functions, which are solutions to a discrete stochastic Burgers equation. Of interest is the success or failure of the ??one force-one solution principle? for this equation. I will reframe this question in the language of polymers, and share some surprising results that follow. Based on joint work with Louis Fan and Timo Seppäläinen.
Haotian Gu : Universality and Phase Transitions of Holomorphic Multiplicative Chaos
- Probability ( 65 Views )The random distribution Holomorphic multiplicative chaos (HMC) with Gaussian inputs is recently introduced independently by Najnudel, Paquette, and Simm as a limiting object on the unit complex circle of characteristic polynomial of circular beta ensembles, and by Soundararajan and Zaman as an analogue of random multiplicative functions. In this talk, we will explore this rich connection between HMC and random matrix theory, number theory, and Gaussian multiplicative chaos. We will also discuss the regularity of this distribution, alongside the fractional moments and tightness of its Fourier coefficients (also referred to as secular coefficients). Furthermore, we introduce non-Gaussian HMC, and discuss the Gaussian universality and two phase transitions phenomenon in the fractional moments of its secular coefficients. A transition from global to local effect is observed, alongside an analysis of the critical local-global case. As a result, we unveil the regularity of some non-Gaussian HMC and tightness of their secular coefficients. Based on joint work with Zhenyuan Zhang.