Quicklists
public 01:14:36

Andrew J. Bernoff : Domain Relaxation in Langmuir Films

  -   Applied Math and Analysis ( 132 Views )

We report on an experimental and theoretical study of a molecularly thin polymer Langmuir layers on the surface of a Stokesian subfluid. Langmuir layers can have multiple phases (fluid, gas, liquid crystal, isotropic or anisotropic solid); at phase boundaries a line tension force is observed. By comparing theory and experiment we can estimate this line tension. We first consider two co-existing fluid phases; specifically a localized phase embedded in an infinite secondary phase. When the localized phase is stretched (by a transient stagnation flow), it takes the form of a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape relaxes to the minimum energy configuration of a circular domain. The tether is never observed to rupture, even when it is more than a hundred times as long as it is thin. We model these experiments by taking previous descriptions of the full hydrodynamics (primarily those of Stone & McConnell and Lubensky & Goldstein), identifying the dominant effects via dimensional analysis, and reducing the system to a more tractable form. The result is a free boundary problem where motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. The problem has a boundary integral formulation which allows us to numerically simulate the tether relaxation; comparison with the experiments allows us to estimate the line tension in the system. We also report on incorporating dipolar repulsion into the force balance and simulating the formation of "labyrinth" patterns.

public 01:29:47

Elisabetta Matsumoto : Biomimetic 4D Printing

  -   Applied Math and Analysis ( 124 Views )

The nascent technique of 4D printing has the potential to revolutionize manufacturing in fields ranging from organs-on-a-chip to architecture to soft robotics. By expanding the pallet of 3D printable materials to include the use stimuli responsive inks, 4D printing promises precise control over patterned shape transformations. With the goal of creating a new manufacturing technique, we have recently introduced a biomimetic printing platform that enables the direct control of local anisotropy into both the elastic moduli and the swelling response of the ink.

We have drawn inspiration from nastic plant movements to design a phytomimetic ink and printing process that enables patterned dynamic shape change upon exposure to water, and possibly other external stimuli. Our novel fiber-reinforced hydrogel ink enables local control over anisotropies not only in the elastic moduli, but more importantly in the swelling. Upon hydration, the hydrogel changes shape accord- ing the arbitrarily complex microstructure imparted during the printing process.

To use this process as a design tool, we must solve the inverse problem of prescribing the pattern of anisotropies required to generate a given curved target structure. We show how to do this by constructing a theory of anisotropic plates and shells that can respond to local metric changes induced by anisotropic swelling. A series of experiments corroborate our model by producing a range of target shapes inspired by the morphological diversity of flower petals.

public 01:34:55

Boyce E. Griffith : Multiphysics and multiscale modeling of cardiac dynamics

  -   Applied Math and Analysis ( 123 Views )

The heart is a coupled electro-fluid-mechanical system. The contractions of the cardiac muscle are stimulated and coordinated by the electrophysiology of the heart; these contractions in turn affect the electrical function of the heart by altering the macroscopic conductivity of the tissue and by influencing stretch-activated transmembrane ion channels. In this talk, I will present mathematical models and adaptive numerical methods for describing cardiac mechanics, fluid dynamics, and electrophysiology, as well as applications of these models and methods to cardiac fluid-structure and electro-mechanical interaction. I will also describe novel models of cardiac electrophysiology that go beyond traditional macroscopic (tissue-scale) descriptions of cardiac electrical impulse propagation by explicitly incorporating details of the cellular microstructure into the model equations. Standard models of cardiac electrophysiology, such as the monodomain or bidomain equations, account for this cellular microstructure in only a homogenized or averaged sense, and we have demonstrated that such homogenized models yield incorrect results in certain pathophysiological parameter regimes. To obtain accurate model predictions in these parameter regimes without resorting to a fully cellular model, we have developed an adaptive multiscale model of cardiac conduction that uses detailed cellular models only where needed, while resorting to the more efficient macroscale equations where those equations suffice. Applications of these methods will be presented to simulating cardiac and cardiovascular dynamics in whole heart models, as well as in detailed models of cardiac valves and novel models of aortic dissection. Necessary physiological details will be introduced as needed.

public 01:34:50

Suncica Canic : Mathematical modeling for cardiovascular stenting

  -   Applied Math and Analysis ( 179 Views )

The speaker will talk about several projects that are taking place in an interdisciplinary endeavor between the researchers in the Mathematics Department at the University of Houston, the Texas Heart Institute, Baylor College of Medicine, the Mathematics Department at the University of Zagreb, and the Mathematics Department of the University of Lyon 1. The projects are related to non-surgical treatment of aortic abdominal aneurysm and coronary artery disease using endovascular prostheses called stents and stent-grafts. Through a collaboration between mathematicians, cardiovascular specialists and engineers we have developed a novel mathematical model to study blood flow in compliant (viscoelastic) arteries treated with stents and stent-grafts. The mathematical tools used in the derivation of the effective, reduced equations utilize asymptotic analysis and homogenization methods for porous media flows. The existence of a unique solution to the resulting fluid-structure interaction model is obtained by using novel techniques to study systems of mixed, hyperbolic-parabolic type. A numerical method, based on the finite element approach, was developed, and numerical solutions were compared with the experimental measurements. Experimental measurements based on ultrasound and Doppler methods were performed at the Cardiovascular Research Laboratory located at the Texas Heart Institute. Excellent agreement between the experiment and the numerical solution was obtained. This year marks a giant step forward in the development of medical devices and in the development of the partnership between mathematics and medicine: the FDA (the United States Food and Drug Administration) is getting ready to, for the first time, require mathematical modeling and numerical simulations to be used in the development of peripheral vascular devices. The speaker acknowledges research support from the NSF, NIH, and Texas Higher Education Board, and donations from Medtronic Inc. and Kent Elastomer Inc.

public 01:14:48

Ben Murphy : Random Matrices, Spectral Measures, and Transport in Composite Media

  -   Applied Math and Analysis ( 112 Views )

We consider composite media with a broad range of scales, whose effective properties are important in materials science, biophysics, and climate modeling. Examples include random resistor networks, polycrystalline media, porous bone, the brine microstructure of sea ice, ocean eddies, melt ponds on the surface of Arctic sea ice, and the polar ice packs themselves. The analytic continuation method provides Stieltjes integral representations for the bulk transport coefficients of such systems, involving spectral measures of self-adjoint random operators which depend only on the composite geometry. On finite bond lattices or discretizations of continuum systems, these random operators are represented by random matrices and the spectral measures are given explicitly in terms of their eigenvalues and eigenvectors. In this lecture we will discuss various implications and applications of these integral representations. We will also discuss computations of the spectral measures of the operators, as well as statistical measures of their eigenvalues. For example, the effective behavior of composite materials often exhibits large changes associated with transitions in the connectedness or percolation properties of a particular phase. We demonstrate that an onset of connectedness gives rise to striking transitional behavior in the short and long range correlations in the eigenvalues of the associated random matrix. This, in turn, gives rise to transitional behavior in the spectral measures, leading to observed critical behavior in the effective transport properties of the media.

public 01:23:18

Massimo Fornasier : Sparse Stabilization and Optimal Control in Consensus Emergence

  -   Applied Math and Analysis ( 95 Views )

From a mathematical point of view self-organization can be described as the formation of patterns, where certain dynamical systems modeling social dynamics tend autonomously to converge. The fascinating mechanism to be revealed by such a modeling is how to connect the microscopical and usually binary rules or social forces of interaction between individuals with the eventual global behavior or group pattern, forming as a superposition in time of the different microscopical effects. In this talk we explore mechanisms to go beyond self-organization, in particular how to externally control such dynamical systems in order to eventually enforce pattern formation also in those situations where this wished phenomenon does not result from spontaneous and autonomous convergence. Our focus is on dynamical systems of Cucker-Smale type, modeling consensus emergence, and we question the existence of stabilization and optimal control strategies which require the minimal amount of external intervention for nevertheless inducing consensus in a group of interacting agents. On the one hand and formally, our main result realizes the connection between certain variational problems involving L1-norm terms and optimal sparse controls. On the other hand, our findings can be informally stated in terms of the general principle for which "A policy maker should always consider more favorable to intervene with stronger actions on the fewest possible instantaneous optimal leaders than trying to control more agents, with minor strength".

public 01:14:44

Geoffrey Schiebinger : Analyzing Developmental Stochastic Processes with Optimal Transport

  -   Applied Math and Analysis ( 111 Views )

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool to sample the complexity of large populations of cells and observe biological processes at unprecedented molecular resolution. This offers the exciting prospect of understanding the molecular programs that guide cellular differentiation during development. Here, we introduce Waddington-OT: a mathematical framework for understanding the temporal dynamics of development based on snapshots of expression profiles. The central challenge in analyzing these data arises from the fact that scRNA-Seq is destructive, which means that one cannot directly measure the trajectory of any given cell over time. We model the population of developing cells mathematically with a time-varying probability distribution (i.e. stochastic process) on a high-dimensional gene expression space, and we propose to recover the temporal coupling of the process with optimal transport. We demonstrate the power of Waddington-OT by applying the approach to study 315,000 scRNA-seq profiles collected at 40 time points over 16 days during reprogramming of fibroblasts to induced pluripotent stem cells. We construct a high-resolution map of reprogramming that rediscovers known features; uncovers new alternative cell fates including neural- and placental-like cells; predicts the origin and fate of any cell class; and implicates regulatory models in particular trajectories. Of these findings, we highlight Obox6, which we experimentally show enhances reprogramming efficiency. Our approach provides a general framework for investigating cellular differentiation.